John R. Ward Okta, Inc. jack.ward@okta.com

Contributions.

This problem is NP-hard, so various e cient approximations exist. Matching Pursuit [29] is a simple greedy algorithm: for every iteration, simply choose the atom that best matches the dierence between the signal and the current approximation. More recent methods include Orthogonal Matching Pursuit [13], which updates all coeccients on every iteration, and Basis Pursuit [10], which converts the optimization into a linear programming problem.

A key challenge in dictionary coding is building dictionaries that e ectively approximate the signal. A well-known dictionary learning algorithm is K-SVD [1], which alternates between coding and dictionary improvement using *k*-means clustering and Orthogonal

John R. Ward and Sean K. Barker

e-Energy'20, June 22-26, 2020, Virtual Event, Australia

reconstructing a time series of *(time, watts)* pairs requires either a consistent recording interval and two pieces of metadata (start time and interval size) or external storage of index values.

For a given data sequence input, Powerstrip begins by dividing

John R. Ward and Sean K. Barker

e-Energy'20, June 22–26, 2020, Virtual Event, Australia

Name	Туре	Description
libde ate [6]	Lossless	LZ77 dictionary coder, as in gzi p
LZMA [31]	Lossless	Extension of LZ77
Zstd [11]	Lossless	LZ77+asymmetric numeral systems
Simple8b [2]	Lossless	Integer coder
FastPFOR [28]	Lossless	Optimized integer coder
Sprintz [7]	Lossless	IoT integer time series compressor
Uniform quant.	Lossy	Quantization
Gaussian quant.	Lossy	Quantization
PAA	Lossy	Downsampling
K-SVD [34]	Lossy	Sparse dictionary learning

Table 2: The reference compression algorithms considered.

e-Energy'20, June 22–26, 2020, Virtual Event, Australia

John R. Ward and Sean K. Barker

