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25% in our experiments). Finally, we use our models as queries
to a variable-length subsequence matching algorithm to detect
the presence of specific loads in smart meter data.

1. E
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Fig. 2. Example resistive loads, demonstrating “step” behavior with a possible initial surge and slow decay to a stable power level.
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Fig. 6. Reactive power demonstrates the same types of patterns as real power and can help in identifying different types of electrical loads.

only non-resistive loads generate reactive power. At a high
level, reactive power is the result of the instantaneous power
(the product of current and voltage) occasionally becoming
negative within each AC cycle, due to out-of-phase current
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Fig. 10. A single complete cycle of a washing machinenannotated with the model types for the operation of simpler internal loads.

challenges. Since the time-series data for a load captures
the power usage for all components that are concurrently
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Fig. 13. A few highly variable (non-linear) loads are responsible for the vast
majority of power variations in a home’s per-second smart meter data.

Fig. 14. The stable maximum power enables a filter that removes power
variations in smart meter data, making it easier to detect on-off transitions.

data (a) and the disaggregated refrigerator and model-derived
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Fig. 16. Refrigerator matches using Euclidean distances
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Fig. 17. Washing Machine matches using Euclidean distances where the model used is one entire cycle of the washing machine turning on
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Fig. 18. Dishwasher matches using Euclidean distances
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Fig. 20. Washing Machine matches using augmented Euclidean matching where the model used to match is the on-off decay cyclic part at the end
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Fig. 21. Dishwasher matches using augmented Euclidean matching

of the third device cycle are not matched, as the match is
obscured by another large device operating during this period,
which we can see around t = 480 min in Figure 20(a).

Finally, we tried the augmented Euclidean matching on the
dishwasher cycle as shown in Figure 21, but here, no real
matches were located at all — the technique simply ‘matches’
the entire trace, which provides no useful information. This
behavior is likely due to the fact that the dishwasher exhibits
fairly simple stepping behavior between static states as shown
in Figure 5(c) — as a result, it can be morphed in the time
and amplitude domains to match the entire aggregate trace.
Despite this, augmented Euclidean matching tends to be more
conservative in matching than straight Euclidean distance,
which tends to result in more false positives.

Both strategies demonstrate that matching within aggregate
traces is a difficult problem given the noisiness and complexity
of typical aggregate traces. Despite this, we believe that our
models can be useful across a variety of matching techniques,
as demonstrated in the examples above.

Result: Our models are useful in detecting the presence of
specific loads in smart meter data by matching them against
a home’s aggregate time-series power data.

V. RELATED WORK

In this paper, we focus explicitly on modeling the power
usage of common electrical loads. While recent work targets
modeling for specific appliances, e.g., a particular brand of
refrigerator [31], it does not generalize to a broad range
of devices. Much of the prior research on modeling power
usage for individual loads has been done in the context of
Non-Intrusive Load Monitoring (NILM). While we expect our
models to be broadly useful for data analysis, including, but
not limited to, NILM, we survey related work in NILM below.
NILM techniques differ significantly basim55 Do(hasi63 -(prog582rticu9(b-(wer)]TJ -9.963 -11.955 TiarietM)-373(of)-435(tof)-curr(redil
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