
Kudzu:

A Decentralized and Self-Organizing

Peer-to-Peer File Transfer System

by

Sean K. Barker

Jeannie Albrecht, Advisor



Contents

1 Introduction 8
1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 12
2.1 Networking Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 P2P Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Napster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Kazaa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Gnutella . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 BitTorrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 DHTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Properties of P2P Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19



CONTENTS 3

4 Implementation: The Kudzu Client 40
4.1 Communication Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



List of Figures





Abstract

The design of peer-to-peer systems presents di�cult tradeo�s between scalability, e�ciency, and
decentralization. An ideal P2P system should be able to scale to arbitrarily large network sizes
and be able to accomplish its intended goal (whether searching or downloading) with a minimum
amount of overhead. To this end, most P2P systems either possess some centralized components
to provide shared, reliable information or impose high communn6  (of)-403(8)28(v)2nn6  (44 Td [(ed)-403(censatp)-28(of)-4on)mum





Chapter 1

Introduction

In the past decade, one of the greatest bene�ciaries of increasing consumer broadband adoption
has been the development of peer-to-peer (P2P) systems. The traditional model of online content
consumption is based around dedicated providers such as corporate web servers that provide up-
stream content to home users and other content consumers. In this model, providers are generally
companies or technically savvy users, but the majority of Internet users do not s4372(o357(con)28(ten)28rs)-2irecterally





10 CHAPTER 1. INTRODUCTION



1.3. CONTENTS 11

the e�cacy of our design and draw conclusions about decentralized P2P systems of this type. In



Chapter 2

Background

2.1 Networking Paradigms



2.2. P2P PARADIGMS 13







16 CHAPTER 2. BACKGROUND

seem manageable at �rst glance, note that this means the total amount of tra�c the network has to
handle grows exponentially; each new node has to handle each new query, resulting in more and more
bandwidth used as the network grows. An analysis of early Gnutella bandwidth usage estimated



2.2. P2P PARADIGMS 17





2.3. PROPERTIES OF P2P NETWORKS 19

2.3 Properties of P2P Networks



20 CHAPTER 2. BACKGROUND



2.4. SUMMARY 21



Chapter 3

Kudzu: An Adaptive,

Decentralized File Transfer System





24 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM

which it has matches (as detailed in Section 3.2.2), the node sends a response back to the node who
generated the query. Note that although answering a query may involve opening a new connection,
this does



3.3. NETWORK ORGANIZATION 25



26 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM

the network without requiring large numbers of connections or excessive query hops through ordinary





28 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM

� chooseNewPeer: Choose and return the next peer in L to which the node is not presently
connected. If every peer in the list is presently connected, return none. This has the e�ect of
simply populating the node’s available connections with the peers that were initially given to



3.3. NETWORK ORGANIZATION 29

impart speci�c information about those documents. This will include, for example, common
language words that have nothing to do with content (e.g., ‘a’, ‘the’).



30 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM



3.3. NETWORK ORGANIZATION 31



32 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM

Figure 3.1: A non-optimal separating hyperplane H1 and an optimal separating hyperplane H2 with
margin m. Test point T is misclassi�ed as black by H1 but correctly classi�ed as white by H2.

This is an optimization problem which can be solved computationally using quadratic programming
techniques. An example of an optimal separating hyperplane for a binary decision problem in two



3.4. DOWNLOAD BEHAVIOR 33

it should or should not connect to the potential peer. We can thus formulate an organization policy
using an SVM classi�er as follows:

� init



34 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM

Figure 3.2: A Kudzu network of 5 nodes containing 3 download swarms. Solid lines indicate peer
connections, while dotted lines indicate swarm connections.





36



3.5. A DISTRIBUTED TEST FRAMEWORK 37



38 CHAPTER 3. KUDZU: AN ADAPTIVE, DECENTRALIZED FILE TRANSFER SYSTEM

For each user, the dataset contains two sets of information: the set of queries issued by the user,
and the complete set of �les shared by the user. Each query consists of a set of keywords and the
timestamp at which the query was issued. Each �le consists of a �lename and a �lesize. The dataset



3.6. SUMMARY 39

only a few minutes or hours rather than multiple months. The choice of time multiple is a tradeo�



Chapter 4

Implementation: The Kudzu Client

We have implemented a Kudzu client according to the speci�cation described in Chapter 3, as well
as the test harness for running experiments on our client. Since a Kudzu network is comprised
entirely of clients with no higher-level coordination required, the client itself implements all aspects
of a Kudzu network. Our implementation of the client is a Java program of roughly 3000 lines.

The client is started on the command line and is provided a directory from which to share �les
and download into and a hostname or IP address of an existing Kudzu peer to connect to. If an
existing peer is not provided, the client starts but has no connections, and thus will not be part of
any greater network until other peers connect to it. Once the client is started, it presents a simple
command-line interface to the network controlled primarily through the following three commands:



4.1. COMMUNICATION FRAMEWORK 41

$ kudzu -d sharedir -n planetlab1.williams.edu
Starting node and connecting to planetlab1.williams.edu...
You are connected to Kudzu.
> query coaster
Sent request for ‘coaster’ to peers.
> responses
Query ‘coaster’:

id 0: ‘roller_coaster.mp4’ (3907036 bytes):
Peer planetlab2.williams.edu
Peer planetlab1.williams.edu

id 1: ‘glass_coasters.mp4’ (2688476 bytes):
Peer planetlab3.williams.edu

> downlo4Iams.edu41



42 CHAPTER 4. IMPLEMENTATION: THE KUDZU CLIENT

However, while the RMI implementation was functional, it had several major 
aws. The most



4.1. COMMUNICATION FRAMEWORK 43

message QueryRequest {
required string keywords = 1; // query keyword string
required bytes requesterAddress = 2; // IP address of requester
required int32 ttl = 3; // query’s remaining number of allowed hops

}

Figure 4.2: One of Kudzu’s protocol bu�er de�nitions.

the sequential unsigned integers are used to encode 0, -1, 1, -2, 2, and so forth. This saves bytes
when encoding ints whose absolute value is low. Complete protocol bu�er messages are also quite



44 CHAPTER 4. IMPLEMENTATION: THE KUDZU CLIENT

message Message {
required int32 type = 1; // type specifying which (if any) content field is filled
optional int32 id = 2; // message id to identify a response message
optional BlockRequest blockRequest = 3;
optional BlockResponse blockResponse = 4;
optional ChunkSetRequest chunkSetRequest = 5;
optional ChunkSetResponse chunkSetResponse = 6;
optional ErrorResponse errorResponse = 7;
optional FileStoreResponse fileStoreResponse = 8;
optional HostRequest hostRequest = 9;
optional HostResponse hostResponse = 10;
optional PeerExchangeRequest peerExchangeRequest = 11;
optional PeerExchangeResponse peerExchangeResponse = 12;
optional QueryRequest queryRequest = 13;
optional QueryResponse queryResponse = 14;

}

Figure 4.3: Protocol bu�er speci�cation of base container message.



4.1. COMMUNICATION FRAMEWORK 45



46 CHAPTER 4. IMPLEMENTATION: THE KUDZU CLIENT

4.2 Message Types

Kudzu peers exchange information using 16 distinct message types. We give a brief description of



4.3. TEST FRAMEWORK 47

� host request: a request for a random assortment of the target peer’s neighbors (not including
the requester, of course). The payload contains an int specifying how many new neighbors are
desired. This message is used by node organization policies to populate their neighbor sets.

� host response: the response to a host request message. The payload contains up to the
number of requested peer addresses (but may contain fewer).

� peer exchange request: a request for all known peers in a download swarm. The payload



48 CHAPTER 4. IMPLEMENTATION: THE KUDZU CLIENT

message BlockRequest {
required sint64 fileChecksum = 1;
required int64 offset = 2;

}

message BlockResponse {
required bytes block = 1;

}

message ChunkSetRequest {
required sint64 fileChecksum = 1;

}

message ChunkSetResponse {
required bytes chunkSet = 1;

}

message FileStoreResponse {
required string fileStore = 1;

}

message HostRequest {
required int32 numHosts = 1;

}

message HostResponse {
repeated bytes addresses = 1;

}

message ErrorResponse {
required string errorMessage = 1;

}

message PeerExchangeRequest {
required sint64 fileChecksum = 1;
repeated bytes peerAddresses = 2;

}

message PeerExchangeResponse {
repeated bytes peerAddresses = 1;

}

message QueryRequest {
required string keywords = 1;
required bytes requesterAddress = 2;
required int32 ttl = 3;
optional int32 id = 4;

}

message QueryResponse {
required string keywords = 1;
message FileStubMsg {

required string name = 1;
required int64 size = 2;
required sint64 checksum = 3;

}
repeated FileStubMsg matches = 2;

}



4.3. TEST FRAMEWORK 49

<USER>
<PROPERTY>

<USERID>436</USERID>



50 CHAPTER 4. IMPLEMENTATION: THE KUDZU CLIENT



4.4. SUMMARY 51

4.3.5 Bootstrapping



Chapter 5

Evaluation

In order to evaluate the e�ectiveness of our design and implementation choices, we conducted ex-
tensive tests of a Kudzu network using our client by running our test framework on PlanetLab. Of
PlanetLab’s roughly 1000 machines, we were able to harness roughly half in our tests, which we



5.1. EVALUATION METRICS 53

5.1.2 Query Recall



54



5.3. BANDWIDTH MOTIVATION 55

simulation run relative to the amount of tra�c actually observed when the dataset was captured.
Selecting the most active nodes is an imperfect solution to this problem but serves to compensate



56 CHAPTER 5. EVALUATION

Figure 5.1: Unique query ratios in a network with uncapped TTL.

includes query requests, query responses, and any other messages exchanged on the network. Note
that it does not include any downloads, since for these tests we did not actually initiate any �le
transfers when matches were received. Our results are shown in Figure 5.2. A random network
organization was used with a minimum connection setting of 3 and a maximum connection setting
of 4. These values were chosen to provide a full range of minimal network coverage to near-complete
network coverage as the max TTL increased to 10. Furthermore, these values are typical real-world
settings { the original Gnutella employed 4 connections per peer.

We see from the curve that bandwidth usage increases signi�cantly more than linearly in the
TTL; its exponential tendency is particularly pronounced up to TTL 6. More variation is present at
higher TTL values, though this likely has to do with the size of the network { with 3 to 4 connections
per node, some queries start reaching most of the nodes in the network around TTL 7 and may stop
propagating in less than the maximum number of hops. However, the aggregate bandwidth continues



5.4. ORGANIZATION STRATEGIES 57

Figure 5.2: Aggregate bandwidth usage across a range of max TTL values.

5.4 Organization Strategies

Given the link between TTL and bandwidth usage, the goal is to maximize query recall while
minimizing the TTL (and thus bandwidth usage as well). We investigated the e�ectiveness of four
di�erent organization policies, which we detail here (see Section 3.3.1 for a description of the general
policy types). Recall that we refer to the minimum number of peer connections as MIN and the
maximum number as MAX. For all of our tests, we set MIN to 3 and MAX to 4.

� A �xed policy with random organization. For this organization, the manager assigned each
peer in the simulation at least MIN and no more than MAX other peers to connect to. The
selection process consisted of randomly picking two peers from the pool of peers with less than
MAX assigned connections and pairing them, then repeating until all peers had at least MIN

connections or no further pairings were possible. This process was entirely executed on the





5.5. QUERY RECALL TESTS 59

bandwidth required in transferring the �le stores required to calculate TFIDF values. Recall that a



60 CHAPTER 5. EVALUATION

 0

 20

 40



5.5. QUERY RECALL TESTS 61

usual query. However, unlike a query, we impose no TTL on the number of hops and send responses
from every recipient node containing a list of the node’s current connections. Once all responses
have arrived at the initial node, it has enough information to reconstruct the entire network. Note
that in the case of the dynamic organization schemes (naive and TFIDF), this will not be an exact



62 CHAPTER 5. EVALUATION









66 CHAPTER 5. EVALUATION



5.5. QUERY RECALL TESTS 67

Figure 5.9: Circular network topology resulting from TFIDF organization with passive exploration.

Figure 5.10: Circular network topology resulting from TFIDF organization with active exploration.





5.6. DOWNLOAD TESTS 69



70 CHAPTER 5. EVALUATION

Figure 5.13: Download completion CDFs for Kudzu and BitTorrent.

initial seeds would quickly spread to the rest of the swarm (resulting in burst download speeds



5.7. SUMMARY 71

5.7 Summary



Chapter 6

Conclusion

6.1 Future Work

While Kudzu is a fully functional P2P �le transfer system in its own right, there are some important







6.2. SUMMARY OF CONTRIBUTIONS 75

6.2 Summary of Contributions

This thesis presented Kudzu, a fully decentralized P2P �le transfer system that employs intelligent



Bibliography



BIBLIOGRAPHY 77

[12] Goh, S. T., Kalnis, P., Bakiras, S., and Tan, K.-L. Real datasets for �le-sharing
peer-to-peer systems. In DASFAA (2005), pp. 201{213.

[13] Google Code contributors. Protocol bu�er benchmarks.
http://code.google.com/p/thrift-protobuf-compare/wiki/Benchmarking, retrieved 20
April 2009.



78 BIBLIOGRAPHY

[25] Ritter, J. Why gnutella can’t scale. no, really.
http://www.darkridge.com/~jpr5/doc/gnutella.html, retrieved 1 May 2009, February
2001.

[26]


